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Week 12

12.1 Factor graph representations
1. Independent set problem

The independent set problem is a problem defined and studied in combinatorics and graph
theory. Given a (unweighted, undirected) graph G(V ,E), an independent set S ⊆ V is
defined as a subset of nodes such that if i ∈ S then for all j ∈ ∂i we have j /∈ S. In other
words in for all (ij) ∈ E only i or j can belong to the independent set.
Example graph:
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(a) Write a probability distribution that is uniform over all independent sets on a given
graph, and represent it as a factor graph in the example given above.
Let N = |V | denote the number of nodes in G. One way of parametrising a subset of
nodes S ⊂ V is to assign to every node i = 1, · · · ,N a binary variable:

σS
i =

{
1 if i ∈ S

0 otherwise
. (1)

which indicates whether node i belongs to S. Similarly, to every edge (ij) ∈ E, define
a function:

f(ij)(σ
S
i ,σS

j ) = I
((
σS

i ,σS
j

)
̸= (1, 1)

)
=

{
1 if

(
σS

i ,σS
j

)
̸= (1, 1)

0 otherwise
. (2)
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Or in words: f(ij) is one if at most one of the nodes i, j connected by the edge (ij)
belong to S. With these two definitions, we can characterise an independent subset
S ⊂ V as:

S is independent ⇔ for all distinct i, j ∈ S, f(ij)(σi,σj) = 1 (3)

Or in words: an independent set is such that none of the nodes belonging to it are
connected by an edge of the graph. For a given set of nodes σ⃗ ∈ {0, 1}N the uniform
probability measure over independent sets is given by:

P(σ⃗) =
1

ZG

∏
(ij)∈E

I ((σi,σj) ̸= (1, 1)) (4)

where:

ZG =
∑

σ⃗∈{0,1}N

∏
(ij)∈E

I ((σi,σj) ̸= (1, 1)) = number of independent sets in G (5)

The factor graph associated with the example graph is:

σ1 σ2 σ3 σ4 σ5 σ6

(12) (13) (23) (14) (25) (36)

Another way to represent the factor graph is

σ1

σ2 σ3

σ4

σ5 σ6

(12) (13)

(23)

(14)

(25) (36)

highlighting the fact that the factor graph is isomorphic to the original graph. This
is not always the case, and in this example hinges on the fact that each factor node
involves only two variable nodes, so that the factor can really be thought of as a weight
associated to the edge.
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(b) Write a probability distribution that gives a larger weight to larger independent sets,
where the size of an independent set is simply its cardinality |S|. Represent it as a
factor graph for the example given above.
Hint: many probability distributions assign more weight to |S|, but some choices lead
to simpler factor graphs. . .
Note that the size of a set |S| can be expressed in terms of the variables σS

i as:

|S| =
N∑

i=1
σS

i (6)

To assign a larger weight to independent sets which are larger, we just need to multiply
our density by any positive increasing function g(|S|):

P(σ⃗) =
1

Z̃G
g

(
N∑

i=1
σi

) ∏
(ij)∈E

I ((σi,σj) ̸= (1, 1)) (7)

For example, we can choose g(x) = ehx for h > 0 to get:

P(σ⃗) =
1

Z̃G

N∏
i=1

ehσi
∏

(ij)∈E

I ((σi,σj) ̸= (1, 1)) (8)

Note that this would introduce a local factor node to variable node in the factor graph.
Other choices of g are possible, but they may not nicely factorize. For this choice of
g, the factor graph is identical as before, with a single-variable additional factor for
each variable with weight ehσi .

(c) Write the Belief Propagation equations for these problems (without coding or solving
them) and the expression for the Bethe free energy that would be computed from the
BP fixed points.
We shall write the BP equations in the case (8) of question (b). Note that the BP
equations for the case discussed in (a) can be readily recovered simply by setting the
field h to zero. We have

gi(σi) = ehσi , f(ij)(σi,σj) = I ((σi,σj) ̸= (1, 1)) . (9)

This gives us the messages

ψ
(ij)→i
σi =

1
Z(ij)→i

[
χ

j→(ij)
1 δσi,0 + χ

j→(ij)
0

]
, (10)

χ
i→(ij)
σi =

1
Zi→(ij)

ehσi
∏

(ik)∈E\(ij)

ψ
(ik)→i
σi . (11)

The terms of the Bethe free entropy read

Zi =
∑

σ

ehσ
∏

(ij)∈E

ψ
(ij)→i
σ , (12)

Z(ij) = χ
i→(ij)
0 χ

j→(ij)
0 + χ

i→(ij)
0 χ

j→(ij)
1 + χ

i→(ij)
1 χ

j→(ij)
0 , (13)

Zi,(ij) =
∑

σ

χ
i→(ij)
σ ψ

(ij)→i
σ . (14)
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2. Matching problem
The matching problem is another classical problem of graph theory. It is related to the
dimer problem in statistical physics, where you aim at covering a graph with two-site
dimers. Given a (unweighted, undirected) graph G(V ,E) a matching M ⊆ E is defined as
a subset of edges such that if (ij) ∈ M then no other edge that contains node i or j can
be in M . In other words a matching is a subset of edges such that no two edges of the set
share a node.
Example problem: same as the independent graph one.

(a) Write a probability distribution that is uniform over all matchings on a given graph,
and draw the factor graph corresponding to the example graph given for the indepen-
dent set problem.
The construction of the factor graph for matching is very similar to the one for the
independent set, with the crucial difference that the variable nodes are the edges of
G, instead of the nodes. As before, we start by assigning a binary variable to each
edge of G which identifies whether it belongs or not to M :

s(ij) =

{
1 if (ij) ∈ M

0 otherwise
(15)

Let N = |V |. As before, for every node i = 1, · · · ,N we assign a function which is
zero if the node is attached to two edges belonging to M :

fi

(
{s(ij)}j∈∂i

)
= I

∑
j∈∂i

s(ij) ≤ 1

 (16)

Note that with this definition we allow for nodes to be unpaired. If we would like
only perfect matchings (i.e. when all eges are paired), we would impose equality. The
uniform measure over all matchings in G can therefore be written as:

P(s⃗) =
1

ZG

N∏
i=1

I

∑
j∈∂i

s(ij) ≤ 1

 (17)

where the partition function ZG counts the total number of matching sets M in G.
Note that different from (2), s⃗ ∈ R|E|. Note that the uniform measure assigns the
same weight to large matchings (i.e. when as many edges as possible are matched)
and smaller matchings (e.g. when only half of the edges are matched) . To illustrate
the factor graph of the matching problem, consider the same graph as in problem (2).
The associated factor graph is given by:

s12 s13 s23 s14 s25 s36

f1 f2 f3 f4 f5 f6
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Notice that in this case the factor graph is not isomorphic to the original graph, due
to multibody factors that involve more than 2 variable nodes.

(b) Write a probability distribution that that gives a larger weight to larger matchings,
where the size of a matching is the cardinality |M |. Then, draw the factor graph
corresponding to the example graph given for the independent set problem
As before, we can write the size of a matching set as a function of s⃗:

|M | =
∑

(ij)∈E

s(ij) (18)

Therefore, to assign a bigger weight to larger matchings, we just need to multiply the
measure by any positive increasing function g(|M |):

P(s⃗) =
1

ZG
g

 ∑
(ij)∈E

s(ij)

 N∏
i=1

I

∑
j∈∂i

s(ij) ≤ 1

 (19)

This is the softer way to encourage a perfect matching than to impose equality at the
factor function fi.

(c) Write the Belief Propagation equations for these problems (without coding or solving
them) and the expression for the Bethe free energy that would be computed from the
BP fixed points.
We treat the general case (b). Setting g(·) = 1 allows to recover the usual matching
problem. For the problem to be tractable, we have to assume that the bias g(·)
factorizes, so we take

g

 ∑
(ij)∈E

s(ij)

 = e

h
∑

(ij)∈E

s(ij)

. (20)

So to connect with the lecture notes,

g(ij) = ehs(ij) , fi({s(ij)}j∈∂i
) = I

∑
j∈∂i

s(ij) ≤ 1

 . (21)

The messages are then given by

ψ
i→(ij)
s(ij)

=
∑

{s(ik)}k∈∂i\j

∏
k∈∂i\j

χ
(ki)→i
s(ik)

I

(∑
l∈∂i

s(il) ≤ 1
)

, (22)

χ
(ij)→i
s(ij)

= ehs(ij)ψ
j→(ij)
s(ij)

. (23)

The three contributions for the Bethe free energy are

Z(ij) =
∑

s

eβsψ
i→(ij)
s(ij)

ψ
j→(ij)
s(ij)

, (24)

Zi =
∑

{s(ij)}j∈∂i

I

∑
j∈∂i

s(ij) ≤ 1

 ∏
j∈∂i

χ
(ij)→i
s(ij)

(25)

Z(ij),i =
∑

s

ψ
i→(ij)
s χ

(ij)→i
s (26)
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12.2 The Ising model on d-regular random graphs
Consider the following probability distribution

pG(S) =
1
Z

exp

β ∑
(ij)∈E

SiSj

 (27)

where G is a graph with N nodes, and edge set E. This is the Ising model on a graph G.
Assume that G is a uniformly sampled d-regular graph, i.e. a graph whose nodes have all
d = O(1) neighbours.

1. Sketch the associated factor graph, and write the BP equations.
TODO

2. When studying problems on random d-regular graphs, we often make a sort of RS ansatz
by saying that the BP messages will be uniform over all edges of the graph. This is because
all local neighbourhoods on the factor graphs are identical. Use this uniformity assumption
to derive the following reduced BP equation

χ(s) =

[∑
t e

βstχ(t)
]d−1∑

s′
[∑

t e
βs′tχ(t)

]d−1 (28)

where for all nodes i and edges (ij) we called χ = χi→(ij).
If all messages are the same, the BP equations reduce to

χ(s) =
ψ(s)d−1∑
s′ ψ(s′)d−1 , ψ(s) =

∑
t e

βstχ(t)∑
s′,t e

βs′tχ(t)
(29)

which can be closed into a single equation for χ, leading to the result.

3. Compute the marginal over a single spin s under the uniform ansatz.
We have

µ(s) = ψ(s)d =

[∑
t e

βstχ(t)
]d∑

s′ [
∑

t e
βstχ(t)]

d
(30)

4. Show that the paramagnetic fixed point χ(s) = 1/2 is a solution of the BP equations.
Substituting the ansatz into the BP equation gives

χ(+1) = 1
2 =

[∑
t e

βt
]d−1∑

s′
[∑

t e
βs′t
]d−1 =

[
eβ + e−β

]d−1

[eβ + e−β ]
d−1 + [e−β + eβ ]

d−1 (31)

which is satisfied.

5. Show that the ferromagnetic fixed point χ(+1) = a ∈ [0, 1] and χ(−1) = 1 − a is a solution
of the BP equations for some value of a∗, and show that a∗ satisfies an equation.
Substituting the ansatz into the BP equation gives

χ(+1) = a =

[
aeβ + (1 − a)e−β

]d−1

[aeβ + (1 − a)e−β ]
d−1 + [ae−β + (1 − a)eβ ]

d−1 =

[
1 +

(
ae−β + (1 − a)eβ

aeβ + (1 − a)e−β

)d−1]−1

(32)
which is the equation that a∗ needs to satisfy.
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6. We expect that in this model there is a second order phase transition, as this is the case
for d → ∞ (Curie-Weiss model), as well as for the finite dimensional counterparts of the
Ising model. To derive the second order phase transition threshold βc we can study the
stability of the iteration

at+1 =

[
1 +

(
ate

−β + (1 − at)eβ

ateβ + (1 − at)e−β

)d−1]−1

= f(at) (33)

around the paramagnetic solution a = 1/2. We expect that the iteration will fall back on
the paramagnetic solution in the paramagnetic phase, while it will diverge away from it in
the ferromagnetic phase.
Argue that the iteration initialized at a0 = 1/2 + ϵ for small ϵ converges back to the
paramagnetic solution only if f ′(1/2) < 1.
If at = 1/2 + ϵ then

at+1 − 1/2 = f(1/2 + ϵ) − 1/2 = f(1/2) + ϵf ′(1/2) + · · · − 1/2 = ϵf ′(1/2) + . . . (34)

from which we see that if f ′(1/2) < 1, the iterates will get closer to 1/2 if f ′ < 1, and
farther viceversa.

7. Compute the critical threshold βc(d) as a function of the degree d.
We just need to compute f ′(1/2) = 1 and solve for β. We have

f(a) = logistic
(
(1 − d) log

(
ate

−β + (1 − at)eβ

ateβ + (1 − at)e−β

))
(35)

where logistic(x) = (1 + e−x)−1. Computing the derivative gives

f ′(1/2) = (d− 1) tanh(β) = 1 =⇒ βc(d) = arctanh
(

1
d− 1

)
(36)

8. Compare the value of βc(d) with the value for the phase transition of the 1d Ising model
βc = +∞, and with the value for the Curie-Weiss model β̃c = 1. To which values of d the
two correspond? How should we rescale β in our problem to be in the same scaling as the
Curie-Weiss model?
For d = 2 we reduce to the 1d chain model, and βc = +∞. To compare with the Curie-
Weiss, we need to make sure that the Hamiltonian −

∑
(ij)∈E SiSj is of order O(N) when

d = N − 1. But if d ≫ 1, the Hamiltonian is of order O(dN), so we want to divide it by
1/d. Thus, calling β = β̃/d we obtain

β̃c(d) = dβc(d) = d arctanh
(

1
d− 1

)
→ 1 (37)

as d → ∞.
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